Q1.

4 (a)		field causes forces on the electrons	[3]
(b)	(i)	$E = Q/4\pi\epsilon_0 r^2$	[3]

© University of Cambridge Local Examinations Syndicate 2003

	Page 3	Mark Scheme Syllate		aper
L		A/AS LEVEL EXAMINATIONS - JUNE 2003 970:	2	04
	(1	ii) $V = Q/4\pi\epsilon_0 r$ = $(9.8 \times 10^{-8})/(4\pi \times 8.85 \times 10^{-12} \times 0.21)$ = $4.2 \times 10^5 \text{ V}$	C1	[2]
	(c)	e.g. sphere not smooth, humid air, etc	B1	[1]
Q2.				
1	(a)	charge is quantised/enabled electron charge to be measured	В	1 [1]
	(b)	<u>all</u> are (approximately) $n \times (1.6 \times 10^{-19} \text{ C})$ so $e = 1.6 \times 10^{-19} \text{ C}$ (allow 2 sig. fig. only summing charges and dividing ten, without explanation scores 1/2	M A	
_			otal	[3]
Q3.				
5	(a)	field strength = potential gradient [- sign not required] [allow $E = \Delta V/\Delta x$ but not $E = V/d$]	В	1 [1]
	(b)	No field for $x < r$ for $x > r$, curve in correct direction, not going to zero discontinuity at $x = r$ (vertical line required)	B B	1

Q4.

5	(a)	(i)	force per unit positive charge (ratio idea essential)		В1	[1]
		(ii)	$E = Q / 4\pi \epsilon_0 r^2$ ϵ_0 being the permittivity of free space		M1 A1	[2]
	(b)	(i)	2.0×10^6 = Q / $(4\pi \times 8.85 \times 10^{-12} \times 0.35^2)$ Q = 2.7×10^{-5} C		C1 A1	[2]
		(ii)	$V = (2.7 \times 10^{-5}) / (4\pi \times 8.85 \times 10^{-12} \times 0.35)$ = 7.0 \times 10 ⁵ V		C1 A1	[2]
		ele	ctrons are stripped off the atoms ctrons and positive ions move in opposite directions, ing rise to a current)		B1	[2]
Q5.		(giv	ing rise to a sarreing		٥,	[-]
QS.						
3	(a)		d strength = potential gradient rect sign OR directions discussed	M1 A1		[2]
	(b)		ea is $21.2 \text{ cm}^2 \pm 0.4 \text{ cm}^2$	C2		
		(<i>if</i> o	putside ± 0.4 cm ² but within ± 0.8 cm ² , allow 1 mark) cm ² represents $(1.0 \times 10^{-2} \times 2.5 \times 10^{3} =) 25$ V	C1		
		pot	ential difference = 530 V	A1		[4]
	(c)	1/211	$nv^2 = qV$			
			$\times 9.1 \times 10^{-31} \times v^2 = 1.6 \times 10^{-19} \times 530$ $\times 1.37 \times 10^7 \text{ ms}^{-1}$	C1 A1		[2]
	(d)	(i)	d = 0	B1		[1]
		(ii)	acceleration decreases then increases some quantitative analysis (e.g. minimum at 4.0 cm) (any suggestion that acceleration becomes zero or that there is a deceleration scores 0/2)	B1 B1		[2]
Q6.						
4	(a)	fro	ork done moving unit positive charge m infinity to the point		M1 A1	[2]
	(b)	(i)	x = 18 cm		A1	[1]
		(ii)	$V_A + V_B = 0$ $(3.6 \times 10^{-9}) / (4\pi \epsilon_0 \times 18 \times 10^{-2}) + q / (4\pi \epsilon_0 \times 12 \times 10^{-2}) = 0$ $q = -2.4 \times 10^{-9} C$ (use of $V_A = V_B$ giving $2.4 \times 10^{-9} C$ scores one mark)		C1 C1 A1	[3]
	(c)	for	ald strength = (-) gradient of graph $cce = charge \times gradient / field strength or force \propto gradient / cce largest at x = 27 cm$		B1 B1 B1	[3]

Q7.

(a	a) ability to do work as a result of the position/shape, etc. of an object					B1 B1	[2]
(b) (i)	1	$\Delta E_{\rm gpe}$	=	$(6.67 \times 10^{-11} \times \{2 \times 1.66 \times 10^{-27}\}^2) / (3.8 \times 10^{-15})$	C1 C1 A1	[3]
		2	$\Delta E_{ m epe}$	=	$(1.6 \times 10^{-19})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-15})$	C1 C1 A1	[3]
	(ii)	idea	a that 2E	K =	$\Delta E_{\text{epe}} - \Delta E_{\text{gpe}}$	B1	
		= (3.03×10^{-1}	0^{-14}		M1 A0	[2]
	(iii)	fusi	on may	occı	ur / may break into sub-nuclear particles	B1	[1]
(0)	foro	· -	a a 14-	2	2	C1	
(a)	= (6	6.4 ×	10-19)2/	$(4\pi$		C1 A1	[3]
(b)	work	k dor	$ne = q\Delta$	V		B1 M1 A0	[2]
(c)	at P	, pot	ential is	(6.4	4×10^{-19}) / $(4\pi\epsilon_0 \times 3 \times 10^{-6})$ + (6.4×10^{-19}) / $(4\pi\epsilon_0 \times 9 \times 10^{-6})$	C1 C1	
		rgy	= 1.6 ×	10 ⁻¹	$^{9} \times (6.4 \times 10^{-19}) / (4\pi\epsilon_{0} \times 9 \times 10^{-6})$	C1 A1	[4]
(a)						M1 A1	[2]
(b)	(i)	field	strength	ı is	potential gradient	B1	[1]
	7- 7-	pote	ntial gra	dier	nt proportional to gradient of (potential energy) graph	B1 B1 A0	[2]
	(a) (b) (c)	(a) force = (6	as a res (b) (i) 1 2 (ii) idea E_K = (= 0 (iii) fusi (a) force = = $(6.4 \times = 2.56 \times = 2.56 \times = 6.4 \times = 6.4$	as a result of the (b) (i) 1 $\Delta E_{\rm gpe}$ 2 $\Delta E_{\rm epe}$ (ii) idea that $2E_{\rm K} = 3.03 = (3.03 \times 1) = 0.19$ MeV (iii) fusion may (a) force = $q_1q_2/4\pi = (6.4 \times 10^{-19})^2/2 = 2.56 \times 10^{-17}$ N (b) potential at P is some work done = $q\Delta \Delta V = 0$ so zero w (c) at midpoint, potential is change in potential is change in potential energy = 1.6×10^{-12} m (a) work done in bring from infinity (to the control of	as a result of the po (b) (i) $1 \Delta E_{\text{gpe}} = $ $= $ 2 $\Delta E_{\text{epe}} = $ $= $ (ii) idea that $2E_{\text{K}} = $ $E_{\text{K}} = 3.03 \times 10 $ $= (3.03 \times 10^{-14}) $ $= 0.19 \text{ MeV}$ (iii) fusion may occur (a) force $= q_1q_2 / 4\pi\epsilon_0 x^2$ $= (6.4 \times 10^{-19})^2 / (4\pi $ $= 2.56 \times 10^{-17} \text{ N}$ (b) potential at P is same work done $= q\Delta V$ $\Delta V = 0$ so zero work (c) at midpoint, potential at P, potential is $(6.4 \text{ change in potential} = \text{energy} = 1.6 \times 10^{-1} $ $= 1.0 \times 10^{-2}$ (a) work done in bringing from infinity (to that proponential gradier)	as a result of the position/shape, etc. of an object $ (b) \ (i) \ 1 \Delta E_{gpe} = GMm/r \\ $	as a result of the position/shape, etc. of an object B1 (b) (i) 1 $\Delta E_{\rm gpe} = GMm/r$ $= (6.67 \times 10^{-11} \times (2 \times 1.66 \times 10^{-27})^2)/(3.8 \times 10^{-15})$ C1 $= 1.93 \times 10^{-40} {\rm J}$ A1 2 $\Delta E_{\rm spe} = Qq/4\pi\epsilon_0 r$ $= (1.6 \times 10^{-19})^2/(4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-15})$ C1 $= 6.06 \times 10^{-14} {\rm J}$ A1 (ii) idea that $2E_K = \Delta E_{\rm spe} - \Delta E_{\rm spe}$ $E_K = 3.03 \times 10^{-14} {\rm J}$ $= (3.03 \times 10^{-14})/1.6 \times 10^{-13}$ $= 0.19 {\rm MeV}$ (iii) fusion may occur / may break into sub-nuclear particles B1 (a) force $= q_1 q_2 / 4\pi\epsilon_0 x^2$ $= (6.4 \times 10^{-19})^2/(4\pi \times 8.85 \times 10^{-12} \times \{12 \times 10^{-6}\}^2)$ $= 2.56 \times 10^{-17} {\rm N}$ A1 (b) potential at P is same as potential at Q work done $= q\Delta V$ $\Delta V = 0$ so zero work done (c) at midpoint, potential is $2 \times (6.4 \times 10^{-19})/(4\pi\epsilon_0 \times 6 \times 10^{-6})$ $= 1.0 \times 10^{-19} {\rm J}$ $= 1.0 \times 10^{-19} {\rm J}$ $= 1.0 \times 10^{-19} {\rm J}$ $= 1.0 \times 10^{-22} {\rm J}$ A1 (a) work done in bringing unit positive charge from infinity (to that point) (b) (i) field strength proportional to force (on particle Q) potential gradient proportional to force (on particle Q) potential gradient proportional to force (on particle Q) potential energy) graph B1

(c)	pot 5.1	ergy entia × 1.	C1 C1 C1		
	r=	2.8 >	4 10 ⁻¹⁰ m	A1	[4]
(d)	(i)		rk is got out as x decreases opposite sign	M1 A1	[2]
	(ii)		ergy would be doubled dient would be increased	B1 B1	[2]
Q10.					
5	(a)	forc	e per unit positive charge acting on a stationary charge	B1	[1]
	(b)	(i)	$E = Q / 4\pi\epsilon_0 r^2$ $Q = 1.8 \times 10^4 \times 10^2 \times 4\pi \times 8.85 \times 10^{-12} \times (25 \times 10^{-2})^2$ $Q = 1.25 \times 10^{-5} \text{C} = 12.5 \mu\text{C}$	C1 M1 A0	[2]
		(ii)	$V = Q / 4\pi\epsilon_0 \Gamma$ = $(1.25 \times 10^{-5}) / (4\pi \times 8.85 \times 10^{-12} \times 25 \times 10^{-2})$ = $4.5 \times 10^5 \text{ V}$ (Do not allow use of V = Er unless explained)	C1 A1	[2]
Q11.					
4	(a)	(i)	as <i>r</i> decreases, energy decreases/work got out (due to) <u>attraction</u> so point mass is negatively charged	M1 A1	[2]
		(ii)	electric potential energy = charge × electric potential electric field strength is potential gradient field strength = gradient of potential energy graph/charge	B1 B1 A0	[2]
	(b)	grad (for	gent drawn at (4.0, 14.5) dient = 3.6 × 10 ⁻²⁴ <±0.3 allow 2 marks, for <±0.6 allow 1 mark)	B1 A2	
			d strength= (3.6 × 10 ⁻²⁴) / (1.6 × 10 ⁻¹⁹) = 2.3 × 10 ⁻⁵ V m ⁻¹ (allow ecf from gradient value) e point solution for gradient leading to 2.3 × 10 ⁻⁵ Vm ⁻¹ scores 1 mark only)	A1	[4]

Q12.

4 (a) work done moving unit positive charge from infinity (to the point)

(b) (gain in) kinetic energy = change in potential energy
$$\frac{1}{2}mv^2 = qV \text{ leading to } v = (2Vq/m)^{\frac{1}{2}}$$
B1
[2]

(c) either $(2.5 \times 10^5)^2 = 2 \times V \times 9.58 \times 10^7$

$$V = 330V$$

$$\text{this is less than } 470V \text{ and so 'no'}$$
C1
$$V = (2 \times 470 \times 9.58 \times 10^7)$$

$$V = 3.0 \times 10^5 \text{ ms}^{-1}$$

$$V = 3.0 \times 10^5 \text{ ms}^{-1}$$

$$V = 3.0 \times 10^5 \text{ ms}^{-1}$$

$$V = 3.0 \times 10^5 \text{ ms}^{-1}$$
(M1)
$$V = 3.0 \times 10^5 \text{ ms}^{-1}$$
(M2)

Q13.

4 (a) (i)
$$V = q / 4\pi \varepsilon_0 R$$
 B1 [1]
(ii) (capacitance is) ratio of charge and potential or q/V M1 $C = q/V = 4\pi \varepsilon_0 R$ A0 [1]
(b) (i) $C = 4\pi \times 8.85 \times 10^{-12} \times 0.45$ C1 $= 50 \text{ pF}$ A1 [2]
(ii) either energy = ½ CV^2 or energy = ½ QV and $Q = CV$ C1 energy of spark = ½ $\times 50 \times 10^{-12} \{(9.0 \times 10^5)^2 - (3.6 \times 10^5)^2\}$ C1 $= 17 \text{ J}$ A1 [3]

Q14.

2 (a) (i) grav. pot. energy =
$$GM_1M_2/R$$
 1 energy = $\{6.67 \times 10^{-11} \times 197 \times 4 \times (1.66 \times 10^{-27})^2\}/9.6 \times 10^{-15}$ 1 = 1.51×10^{-47} J 1 [3]

(ii) elec. pot. energy = $Q_1Q_2/4\pi \varepsilon_0R$ 1 energy = $\{79 \times 2 \times (1.6 \times 10^{-19})^2\}/4\pi \times 8.85 \times 10^{-12} \times 9.6 \times 10^{-15}$ 1 = 3.79×10^{-12} J 1 [3]

(b) electric potential energy >> gravitational potential energy 1 [1]

(c) either 6 MeV = 9.6×10^{-13} J or 3.79×10^{-12} J = 24 MeV 1 not enough energy to get close to the nucleus 1 [2]

Q15.

(a)	(i)	either lines directed away from sphere or lines go from positive to negative or line shows direction of force on positive charge	
		so positively charged	[2]
	(ii)	either all lines (appear to) radiate from centre or all lines are normal to surface of sphere	[1]
(b)			[2]
(c)	(i)	$V = (0.76 \times 10^{-9}) / (4\pi \times 8.85 \times 10^{-12} \times 0.024)$	[2]
	(ii)		
		OR less work done moving test charge from infinity	[3]
(d)	eith or	er gravitational field is <u>always</u> attractive field lines must be directed towards both box and sphereB1	[1]
(a)			[2]
(b)	(i)	α -particle and gold nucleus repel each other	[2
	(ii)	1 potential energy = $(79 \times 2 \times \{1.6 \times 10^{-19}\}^2) / (4\pi \times 8.85 \times 10^{-12} \times d)$	[3]
	(ii)	2 $F = Qq/4\pi\epsilon_0 d \times 1/d = 7.68 \times 10^{-13} \times 1/(4.7 \times 10^{-14})$	[2]
		[Tota	al: 9
	(b) (c) (d)	(ii) (b) tangin c (c) (i) (ii) (d) eith or (a) woo mo (b) (i) (iii)	or line shows direction of force on positive charge

Q17.

4	(a) (i)	zero fi	eld (strength) inside spheres	B1	[1]
		(ii)	either or	field strength is zero the fields are in opposite directions at a point between the spheres	M1 A1	[2]
	(b) (i)	field st	trength is (–) potential gradient (not V/x)	B1	[1]
		(ii)		eld strength has maximum value x = 11.4 cm	B1 B1	[2]
				eld strength is zero ther at x = 7.9 cm (allow ±0.3 cm) r at 0 to 1.4 cm or 11.4 cm to 12 cm	B1 B1	[2]
Q18	•					
3	(a)	(i)	(tangen	t to line gives) direction of force on a (small test) mass	B1	[1]
		(ii)	_	t to line gives) direction of force on a (small test) charge is positive	M1 A1	[2]
	(b)	e.g. line grea field	ater sepa	elds I to surface aration of lines with increased distance from sphere h ∝ 1 / (distance to centre of sphere) ² ensible answer)	B1	
		e.g. elec awa e.g. elec	etric force by from so gravitati etric field	ional force (always) towards sphere e direction depends on sign of charge on sphere / towards or sphere ional field/force is attractive /force is attractive or repulsive ensible comparison)	B1 B1 (B1) (B1)	[3]
	(c)	elec	ctric force	force = $1.67 \times 10^{-27} \times 9.81$ = 1.6×10^{-26} N = $1.6 \times 10^{-19} \times 270 / (1.8 \times 10^{-2})$ = 2.4×10^{-15} N e very much greater than gravitational force	A1 C1 A1 B1	[4]

Q19.

4	(a)	(i)	force proportional to product of (two) charges and inversely proportional to square of separation reference to point charges	M1 A1	[2]
		(ii)	$F = 2 \times (1.6 \times 10^{-19})^2 / \{4\pi \times 8.85 \times 10^{-12} \times (20 \times 10^{-6})^2\}$ = 1.15 × 10 ⁻¹⁸ N	C1 A1	[2]
	(b)	(i)	on either a stationary charge	M1 A1	121
		(ii)	or a positive charge 1. electric field is a vector quantity electric fields are in opposite directions charges repel		[2]
			Any two of the above, 1 each	B2	[2]
			 graph: line always between given lines crosses x-axis between 11.0 μm and 12.3 μm reasonable shape for curve 	M1 A1 A1	[3]
Q20	١.				
3	(a)		k done bringing unit positive charge n infinity (to the point)	M1 A1	[2]
	(b)	(i)	either both potentials are positive/same sign so same sign gradients are positive & negative (so fields in opposite directions) so same sign	M1 A1 (M1) (A1)	[2]
		(ii)	the individual potentials are summed	B1	[1]
		(iii)	allow value of x between 10 nm and 13 nm	A1	[1]
		(iv)	$V = 0.43V$ (allow $0.42 V \rightarrow 0.44 V$) energy = $2 \times 1.6 \times 10^{-19} \times 0.43$ = $1.4 \times 10^{-19} J$	M1 A1 A1	[3]
Q21					
5	(;	a) gi	raph: straight line at constant potential = V_0 from $x = 0$ to $x = r$ curve with decreasing gradient passing through $(2r, 0.50V_0)$ and $(4r, 0.25V_0)$	B1 M1 A1	[3]
	(1	b) gi	raph: straight line at $E = 0$ from $x = 0$ to $x = r$ curve with decreasing gradient from (r, E_0) passing through $(2r, \frac{1}{4}E_0)$ (for 3rd mark line must be drawn to $x = 4r$ and must not touch x -axis)	B1 M1 A1	[3]

Q22.

4	(a)	(i)	$F_{\rm E} = Q_1 Q_2 / 4\pi \varepsilon_0 r^2$ = 8.99 × 10 ⁹ × (1.6 × 10 ⁻¹⁹) ² / (2.0 × 10 ⁻¹⁵) ²	C1	
			= 58 N	A1	[2]
		(ii)	$F_{G} = Gm_{1}m_{2}/r^{2}$ $= 6.67 \times 10^{-11} \times (1.67 \times 10^{-27})^{2}/(2.0 \times 10^{-15})^{2}$	C1	
			$=4.7 \times 10^{-35} \mathrm{N}$	A1	[2]
	(b)	(i)	force of <u>repulsion</u> (much) greater than force of <u>attraction</u> must be some other force of <u>attraction</u> to hold nucleus together	B1 M1 A1	[3]
			(Do not allow if $F_G > F_E$ in (a) or one of the forces not calculated in (a))		
		(ii)	outside nucleus there is repulsion between protons	B1	
			either attractive force must act only in nucleus or if not short range, all nuclei would stick together	B1	[2]
Q23.					
5	(a)		k done in moving unit positive charge n infinity (to the point)	M1 A1	[2]
	(b)	(i)	inside the sphere, the potential would be constant	B1	[1]
		(ii)	for point charge, Vx is constant co-ordinates clear and determines two values of Vx at least 4cm apart conclusion made clear	B1 M1 A1	[3]
	(c)	q =	$= 4\pi \varepsilon_0 V x$ $= 4\pi \times 8.85 \times 10^{-12} \times 180 \times 1.0 \times 10^{-2}$	M1	
		, -	$= 2.0 \times 10^{-10}$ C	A1	[2]

Q24.

5 (a) work done/energy in moving unit positive charge from infinity (to the point) M1
A1 [2]

(b) (i)
$$V = q/4\pi e_0 r$$
at $16 \, \text{kV}$, $q = 3.0 \times 10^{-8} \, \text{C}$

$$r = (3.0 \times 10^{-8})/(4\pi \times 8.85 \times 10^{-12} \times 16 \times 10^3)$$

$$= 1.69 \times 10^{-2} \, \text{m} \, (allow \, 2 \, \text{s.f.})$$

$$(allow \, any \, answer \, which \, rounds \, to \, 1.7 \times 10^{-2})$$

(ii) energy is/represented by area 'below' line energy = $\frac{1}{2}qV$

$$= \frac{1}{2} \times 24 \times 10^3 \times 4.5 \times 10^{-8}$$

$$= 5.4 \times 10^{-4} \, \text{J}$$
C1
$$= 5.4 \times 10^{-4} \, \text{J}$$
C1
$$= 1.69 \times 10^{-8} \, \text{C1}$$

$$= 1.6$$

B1

C1

A1

[3]

(c) $V = q/4\pi\epsilon_0 r$ and $E = q/4\pi\epsilon_0 r^2$ giving Er = V

 $2.0 \times 10^6 \times 1.7 \times 10^{-2} = V$

 $V = 3.4 \times 10^4 \text{ V}$